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Abstract
In this work the critical behaviour of films of La0.7Ba0.3MnO3, La0.7Sr0.3MnO3,
La0.7Ca0.3MnO3 and (LaMn)1−δO3 is studied. Apart from the La0.7Ca0.3MnO3

film, each of these manganite films shows a continuous phase transition with
mean-field critical exponents. The analysis of the critical amplitudes indicates
the formation of spin polarons. The zero-field resistivity of the La0.7Ca0.3MnO3

film is consistent with a model of percolative phase separation.

1. Introduction

The perovskites La0.7A0.3MnO3 with A = Ca, Sr, Ba, . . . , show a ferromagnetic transition at
a composition-dependent Curie temperature that is accompanied by a metal–semiconductor
transition. The application of a magnetic field leads to a large shift of the transition temperature
and a corresponding ‘colossal’ magnetoresistance (CMR). It is generally found that the
magnitude of the magnetoresistance decreases with increasing Curie temperature; see [1].
The mechanisms underlying CMR are not fully understood. One basic ingredient is double
exchange between Mn3+ and Mn4+ ions [2]. Furthermore, the electron–phonon interaction
plays a decisive role as regards the localization of charge carriers [3] and the formation of
spin polarons has been suggested [4]. There is experimental evidence for phase separation in
some manganite compounds, especially at compositions close to charge ordering and with low
Curie temperature [5–7]. Consequently, it has been proposed recently that phase separation
and percolation are the driving mechanisms behind CMR; see [8, 9].

It is well known that the conductivity of the manganites is very sensitive to structural
distortions [1]. Since the ferromagnetism in doped manganites arises through real charge
transfer between the Mn sites and since the low-temperature mean free path does not exceed
1–2 lattice spacings [10], the exchange integral is likely to be of short range and the critical
exponents might be close to those of the Heisenberg model. This was indeed found in a recent
theoretical study [11].

In this work the transition region for manganite films with various compositions, namely
La0.7Ba0.3MnO3, La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, (LaMn)1−δO3, has been studied by
means of global magnetization and resistivity measurements. This investigation aims at
the determination of the critical exponents, since the values reported in the literature show
considerable scatter; see table 6. Moreover, an analysis of the critical amplitudes enables
the determination of the fluctuating magnetic moment. It was found that La0.7Ba0.3MnO3,
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La0.7Sr0.3MnO3 and (LaMn)1−δO3 films exhibit a second-order phase transition with mean-
field critical exponents. The fluctuating entities are spin polarons consisting of 2–3 Mn ions.
The La0.7Ca0.3MnO3 film does not show a continuous phase transition, but is more consistently
described within a percolative phase-separation model.

2. Theoretical models and data analysis

2.1. Critical behaviour of the magnetization

In the vicinity of a second-order phase transition with Curie temperature TC the existence of
a diverging correlation length ξ = ξ0|1 − T/TC |−ν leads to universal scaling laws for the
saturation magnetization MS and susceptibility χ . Using standard notation, these are given
by [12]

MS = M0(1 − T/TC)
β (1)

χ = χ0(T /TC − 1)−γ (2)

defining the critical exponents β and γ . At the transition temperature the magnetization is
related to the applied field H by

µ0H = D(µ0MS)
δ (3)

which defines the critical exponent δ = 1 + γ /β. µ0 denotes the vacuum permeability. The
critical exponents as well as the critical amplitudes M0, h0 = χ−1

0 M0 and D exhibit universal
behaviour near the phase transition point. There are several universality classes with sets of
critical indices that depend on the spin and spatial dimensionality. Values for the mean-field,
Ising and Heisenberg models are given in table 1 for spin S = 1/2 [13,14]. Whereas the critical
indices do not depend on the magnitude of the spin quantum number, the critical amplitudes
generally do; in mean-field theory one finds

M0/MS(0) = {
10(S + 1)2/3

[
(S + 1)2 + S2

]}1/2
(4)

µ0µh0/kBTC = {
30S2/

[
(S + 1)2 + S2

]}1/2
(5)

D(µ0M0)
δ/µ0h0 = 1. (6)

µ denotes the magnetic moment of the fluctuating entity, µ = gSµB , with electronic g-factor
g � 2 and Bohr magneton µB = eh̄/2m.

Table 1. Critical exponents and reduced critical amplitudes for the generic models used for the
description of magnetic critical phenomena. The values are taken from [13] and [14].

Exponent Mean-field theory Heisenberg model Ising model

β 0.5 0.365 0.325
γ 1.0 1.387 1.240
δ 3.0 4.803 4.816
ν 0.5 0.705 0.630
η 0.0 0.034 0.032

Reduced Mean-field theory, Heisenberg model, Ising model,
critical amplitude S = 1/2 fcc, S = 1/2 fcc, S = 1/2

M0/MS(0) 1.73 1.69 1.49

µ0µh0/kBTC 1.73 1.58 1.52

D(µ0M0)
δ/µ0h0 1.0 1.55 1.88
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The spin–spin correlation function in the critical region obeys a scaling equation given
by [12]

〈�S0 · �S�r〉 = G(r/ξ)

r1+η
. (7)

Here �S�r denotes a spin at position �r , G(x) is an unknown scaling function; η signifies the
deviation from the Ornstein–Zernicke result (η = 0) and is usually small, 0.01 � η � 0.04
[15]. From the relation between the spin–spin correlation function and the susceptibility
χ ∝ ∑

�r〈�S0 · �S�r〉 follows the scaling equation [12, 15]

γ = (2 − η)ν. (8)

In the critical region the magnetization obeys the scaling relation

µ0M = |ε|βF±
[
µ0H |ε|−β−γ

]
. (9)

The exact functional form of the scaling function F− (F+) below (above) the transition is
unknown; the asymptotic forms for small and large arguments x are

F−(0) = M0 (10)

F+(x) ∼
x→0

χ0x (11)

F±(x) ∼
x→∞ (D−1x)1/δ. (12)

For the comparison of experimental data with the idealized theory, several points have
to be taken into account [12]. The phase transition temperature can usually not be directly
measured, but has to be self-consistently determined from the analysis of the magnetization. In
order to avoid effects due to magnetic domain formation or crystalline anisotropy, the saturation
magnetization and susceptibility are determined by extrapolation from the high-field regime
assuming an equation of state of the form [16]

[χ0H/M]1/γ = [T/TC − 1] + [M/M0]1/β . (13)

Once values for χ = M/H and MS have been established by the above extrapolation
procedure, these are analysed by two methods, namely (a) direct fitting using the critical
amplitudes, exponents and the Curie temperature as free parameters and (b) the method of
Kouvel and Fisher. The latter is based on the equations

[d ln(MS)/dT ]−1 = (T − TC)/β (14)[
d ln(χ−1)/dT

]−1 = (T − TC)/γ. (15)

The parameter values determined by the two methods were in good agreement. The Curie
temperatures obtained from the analysis of the magnetization and susceptibility agreed within
the experimental uncertainty.

2.2. Percolation theory

It has been proposed that the metal–semiconductor transition in the manganites can be
understood as percolation of phase-separated metallic and insulating regions. Here the phase
separation is not of charge-segregation type, since the length scales involved are much too
large to be compatible with the Coulomb interaction. The percolation problem encountered
in the manganites is obviously of continuum type and might be described by ‘swiss-cheese’
models [17, 18]. This, however, involves an unknown distribution function and non-universal
critical exponents, thereby excluding a strict comparison of data to theory. Therefore, this
work will be restricted to lattice percolation.
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Consider a simple cubic lattice; metallic or semiconducting bonds are placed on this
lattice with probabilities p and q = 1 − p, respectively. If p exceeds some critical value, the
percolation threshold pc, an infinite metallic cluster forms and the resistivity of the network
becomes metallic. The system undergoes a second-order phase transition in complete analogy
to the ferromagnetic phase transition with a diverging cluster size ξp = ξp0|1−p/pc|−νp . The
corresponding quantities are the probability P that a bond belongs to the infinite cluster and
the average cluster size S, which follow the scaling laws

P = P0(p/pc − 1)βp (16)

S = S0(1 − p/pc)
−γp . (17)

Values for the critical exponents and the percolation threshold are listed in table 2.

Table 2. Percolation exponents and percolation thresholds for 2D and 3D systems.

Exponent d = 2 Reference d = 3 Reference

βp 5/36 [19] 0.41 [19]
γp 43/18 [19] 1.80 [19]
νp 4/3 [19] 0.88 [19]
t 1.299 [20] 1.98 [21]
s 1.299 [20] 0.73 [22]
pc (bond), 0.5 [19] 0.2488 [19]
simple cubic
pc (site), 0.5 [19] 0.3116 [19]
simple cubic

The correlation function at the percolation threshold decays algebraically, g(r) ∝
r−(d−2+ηp), with (d − 2 + ηp)νp = 2βp. d is the spatial dimension. An inspection of the
values for βp and νp in table 2 shows that ηp is small as in the case of ferromagnets.

More interesting in the present work are the conductivity exponents t and s which are
defined as follows. Consider a metal–insulator network with metallic and insulating bonds
placed on a regular lattice with probabilitiesp and q = 1−p, respectively. Near the percolation
threshold the conductivity of the network vanishes as

σ ∝ (p − pc)
t p > pc. (18)

If one considers a metal–superconductor network with occupation probabilities p (metal)
and q = 1 − p (superconductor), the conductivity diverges as the percolation threshold is
approached:

σ ∝ (qc − q)−s q < qc. (19)

Values for the critical exponents found numerically are listed in table 2.
In general, the averaged conductivity ( of a binary mixture with resistivities ρm

(probability p) and ρs (probability q = 1 − p) can be written as ( = F2(p, ρm, ρs) with
F2 being an unknown function. In the case of phase separation in the manganites, ρm

and ρs denote the resistivities of the metallic and semiconducting fractions, respectively.
Dimensional analysis implies that F2 is a homogeneous function of the bond resistivities
such that the conductivity can be written as ( = ρ−1

m F1(p, h) with h = ρm/ρs and
F1(p, h) = F2(p, 1, h−1). In the limits h = 0 and h = ∞ this corresponds to the metal–
insulator and metal–superconductor networks with the aforementioned critical behaviour near
pc and qc, respectively. For a general binary mixture, however, h is finite. Near the critical
point p = pc, h = 0 the following scaling behaviour was found to apply [23]:

( = ρ−1
m |+p|t,±

[
h|+p|−s−t

]
(20)
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with +p = p−pc and the scaling function ,+ (,−) above (below) the transition. These have
the asymptotic forms

,+(x) ∼
x→0

,0 (21)

,−(x) ∼
x→0

x/x0 (22)

,±(x) ∼
x→∞ Kxt/(s+t). (23)

In order to describe the behaviour across the transition, it is often more convenient to define a
new function

.(y) = yt,+(y
−s−t ) = (−y)t,−[(−y)−s−t ]

such that

( = ρ−1
m ht/(s+t).

[
+p h−1/(s+t)

]
. (24)

The exact form of the scaling functions ,±, . is unknown. . is analytic and can be expanded
in powers of y, .(y) = .0 + .1y + · · ·. In two-dimensional systems, .0 = 1 by virtue of the
duality symmetry. At the percolation transition, y = 0, and the average resistivity ρ = 1/(
is given by

ρ = (ρs
mρ

t
s)

1/(s+t) 1

.0
(25)

which can be used to determine pc from resistivity data.
A good approximation to the resistivity of binary mixtures not too close to the percolation

threshold can be obtained within the effective-medium approximation (EMA) (see [23] and
references cited therein). The EMA is a self-consistent scheme for determining the effective
conductivity of a random mixture. In this scheme a fictitious network is considered, where all
bonds have an effective conductance ( except for one particular bond that has a conductance
chosen randomly from the conductance distribution. If an electric field is applied to the network
along the direction of this particular bond, a potential Vσ develops over this bond, whereas a
voltage V is measured over all bonds far from this perturbation. The EMA requires this voltage
fluctuation to vanish if averaged over the conductivity distribution; from this self-consistency
condition the effective conductivity of a binary random mixture is obtained as

( = ρ−1
m

(p − pc) + (q − pc)h +
√
(p − pc)2 + (q − pc)2h2 + 2(pc − p2

c + pq)h

2(1 − pc)
. (26)

with pc = 1/d . If both +p and h are small in modulus, an approximation to the scaling
function .(y) can be derived from equation (26):

.(y) =
[
d2y2 + 4(d − 1)

]1/2
+ dy

2(d − 1)
. (27)

3. Film preparation and experimental details

La0.7A0.3MnO3, A = Ca, Sr, Ba, and (LaMn)1−δO3 films were grown by pulsed laser ablation
(XeCl, 308 nm) from stoichiometric targets at an oxygen partial pressure of 100 mTorr and
a substrate temperature of about 700 ◦C. The LSMO target was bought commercially; it was
fabricated by a spray pyrolysis process which gives a good dispersion of the mixed oxides; the
other three targets were fabricated by a standard solid-state reaction process. After removal
from the deposition chamber the films were transferred to a furnace and annealed for 4 h at
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950 ◦C in flowing O2. High-quality epitaxial films were produced by this route on LSAT(001)
substrates (LSAT ≡ (LaAlO3)0.3(Sr2TaAlO6)0.7) with Curie temperatures ranging from 270 K
(LCMO) to 360 K (LSMO) and low residual resistivities between 50 and 100 µ1 cm. The
film thickness was determined from the deposition time and has an estimated error of about
10%. Here four films were investigated, with the parameters listed in table 3.

Table 3. Parameters of the manganite films investigated in this work.

Composition Thickness (nm) Curie temperature (K)

La0.7Ca0.3MnO3 (LCMO) 150 271.0 K
La0.7Sr0.3MnO3 (LSMO) 130 360.6 K
La0.7Ba0.3MnO3 (LBMO) 150 311.2 K
(LaMn)1−δO3 (LMO) 150 288.3 K

In this work we report extensive magnetization measurements in the critical region of
the manganite films. The measurements were performed with a superconducting quantum
interference device (SQUID) magnetometer (MPMS-7, Quantum Design) with the field applied
parallel to the film surface along [100]. In this configuration, demagnetizing effects are
negligible. The isothermal magnetization of the films was measured after warming above
the Curie temperature. The temperature stability was about ±0.01 K. The magnetization of
the LSAT substrate was measured at six temperatures in the range between 250 and 370 K
and was found to be diamagnetic with a very small ferromagnetic signal, probably due to
impurities. This background magnetization was interpolated to the respective measurement
temperatures and subtracted from the measured film magnetization. Resistivity measurements
were performed with a standard dc four-point technique in van der Pauw geometry [24].

4. Results

The magnetizations of the four manganite films recorded in an applied field of 0.3 T are shown
in figure 1. Each film shows a saturation magnetization µ0MS at low temperatures of about
0.74 T in agreement with a mean magnetic moment of 3.7 µB /unit cell. From the inflection
point of the magnetization, the Curie temperatures can be estimated to be: 271.1 K (LCMO),
288.4 K (LMO), 312.6 K (LBMO) and 360.8 K (LSMO). The transition width depends on the
doping, with the LCMO films having the sharpest and the LBMO film having the most gradual
transition. Since the LSMO target is thought to be of better quality than the home-made LCMO
target, this variation in transition width is likely to reflect an intrinsic mechanism rather than
compositional inhomogeneity.

4.1. (LaMn)1−δO3, La0.7Sr0.3MnO3 and La0.7Ba0.3MnO3

After the Curie temperature had been estimated from the inflection point in the magnet-
ization, sets of magnetization isotherms were measured in the transition region with a temp-
erature separation of +T = 1.5 K. A set of isotherms is shown in figure 2 for the LSMO
film for temperatures ranging from 345 to 378 K. One can see a gradual transition from
clearly ferromagnetic behaviour at low temperatures to nearly paramagnetic behaviour at high
temperatures.

For further analysis, the isothermal magnetization data were replotted according to the
equation of state (13) with the critical exponents β and γ used as variable parameters. For
the LMO, LSMO and LBMO films, sets of straight lines could be produced with the choice
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Figure 1. Magnetizations of the four manganite films investigated as functions of the temperature.
The measurements were performed in an applied field of 0.3 T and the diamagnetic signal from
the substrate was subtracted.
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Figure 2. Magnetization isotherms recorded for the LSMO film in the critical region.

β = 0.5 ± 0.05 and γ = 1.0 ± 0.05; the LCMO film did not follow equation (13) for any
reasonable choice of parameters; see below. Therefore, the critical behaviour of the LMO,
LSMO and LBMO films will be discussed first. An Arrott plot for the LMO film is shown in
figure 3.
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Figure 3. An Arrott plot for the LMO film showing a set of straight lines at high magnetic fields.

The values for the saturation magnetization MS and susceptibility χ were determined by
extrapolation of the high-field regime in the Arrott plot. The resulting data were analysed as
discussed in section 2.1. The critical exponent δ was determined by fitting the magnetization
isotherm closest to the Curie temperature to equation (3). The values for the Curie temperature,
critical exponents and critical amplitudes are listed in table 4. The saturation magnetization
and susceptibility are shown in figure 4 as a function of the reduced temperature.

Table 4. Curie temperatures, critical exponents and critical amplitudes determined from the analysis
of the saturation magnetization and susceptibility.

Film LSMO LBMO LMO

TC (K) 360.0 ± 0.3 311.2 ± 0.2 288.3 ± 0.3
β 0.45 ± 0.02 0.54 ± 0.02 0.50 ± 0.01
γ 1.08 ± 0.04 1.04 ± 0.04 1.04 ± 0.04
δ 3.04 ± 0.04 3.08 ± 0.04 3.06 ± 0.03
µ0M0 (T) 1.18 ± 0.07 1.25 ± 0.04 1.48 ± 0.04

χ−1
0 190 ± 20 137 ± 13 152 ± 14

D (T−2) 83.0 ± 2.0 96.0 ± 3.1 53.7 ± 0.3

The critical exponents found for the LMO, LSMO and LBMO films are quite close to
the mean-field ones. Mean-field critical exponents were predicted to occur in systems with
long-range exchange interactions of the form J (r) ∼ r−d−v with 2v < d; d is the spatial
dimension [25]. It is quite surprising that manganite films show mean-field critical exponents,
since the magnetic interaction is mediated by the double-exchange mechanism and is supposed
to be short range: even at low temperatures, typical mean free paths do not exceed 1–2 lattice
spacings [10]. An indication of the underlying mechanism comes from an inspection of the
reduced critical amplitudes which are presented in table 5. The agreement of the experimentally
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Figure 4. The saturation magnetization and susceptibility for the LMO, LSMO and LBMO films
as functions of the reduced temperature.

Table 5. Reduced critical amplitudes. The magnetic moment µ was calculated using the values of
the spin quantum number S given in the table.

Film M0/MS(0) D(µ0M0)
δ/kBTC S µ0µh0/kBTC µ0µh0/kBTC |theoretical

LSMO 1.59 ± 0.10 0.61 ± 0.10 3.7/2 1.55 ± 0.19 2.98
7/2 2.92 ± 0.35 3.36
11/2 4.59 ± 0.56 3.54

LBMO 1.69 ± 0.10 1.11 ± 0.13 3.7/2 1.39 ± 0.14 2.98
7/2 2.59 ± 0.26 3.36
11/2 4.07 ± 0.41 3.54

LMO 2.00 ± 0.10 0.79 ± 0.09 3.7/2 1.94 ± 0.19 2.98
7/2 3.67 ± 0.35 3.36
11/2 5.77 ± 0.55 3.54

determined reduced critical amplitudes M0/MS(0) and D(µ0M0)
δ/(µ0h0) with the prediction

of mean-field theory is satisfactory. This is encouraging, since the critical amplitudes are much
more affected by corrections to scaling than the critical exponents. The measured reduced
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amplitude µ0µh0/(kBTC), however, is found to be systematically smaller than the theoretical
value, if a mean magnetic moment µ = 3.7 µB is assumed. This critical amplitude indicates
that the moment of the fluctuating entity is larger than a single Mn-ion moment and is in the
range between 7 and 11 µB corresponding to small clusters of two or three Mn ions. This
is consistent with the results of pulsed neutron scattering studies on La1−xSrxMnO3 powder
samples showing polarons extending over three Mn sites in the metallic phase [26] and with
low-field magnetization measurements on polycrystalline La0.67Ca0.33MnO3 samples [27].

The validity of the critical analysis was further checked by scaling of the magnetization
isotherms following equation (9). The scaling plots are shown in figure 5 using the critical
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Figure 5. Scaling plots for the (a) (LaMn)1−δO3, (b) La0.7Sr0.3MnO3 and (c) La0.7Ba0.3MnO3
films showing a collapse of magnetization isotherms in the critical region onto the two branches of
the scaling function. The solid lines indicate the asymptotic forms of the scaling function as given
in equations (10)–(12).
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exponents β = 0.5 and γ = 1.0. A convincing scaling of the data points on the two branches of
the scaling function F± can be seen. The solid lines in figure 5 indicate the asymptotic forms of
the scaling function as detailed in equations (10)–(12); the experimentally determined scaling
function is in good agreement with these limiting forms.

4.2. La0.7Ca0.3MnO3: percolation transition

In contrast to the data for LMO, LSMO and LBMO, the magnetization isotherms for LCMO
did not follow the equation of state (13) for reasonable choices of the critical exponents
0.2 � β � 0.7 and 0.8 � γ � 1.5. An Arrott plot of the data is shown in figure 6 and confirms
that the magnetization isotherms do not fall on straight lines. This finding is consistent with
the results of Mira et al [28] and Moutis et al [29] on ceramic LCMO samples. These authors
report negative slopes of the H/M versus M2 plot which—according to a criterion given by
Banerjee [30]—indicate a first-order transition. This crossover from a second-order to a first-
order transition is consistent with the measured transition width. Although the Arrott plot of
the LCMO film studied in this work does not show negative slopes, the transition might be
close to first order, such that a critical scaling analysis fails in the field range investigated,
0 � µ0H � 5 T.
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Figure 6. An Arrott plot for the La0.7Ca0.3MnO3 film showing curvature of the magnetization
isotherms over the whole measurement field range. The straight lines to the 272.0 K isotherm are
used to perform a critical scaling analysis in the regime of intermediate and high field.

It is possible to perform critical scaling analyses in a regime of intermediate and high field;
this is indicated by the straight lines to the 272.0 K isotherm. However, such an analysis is
a priori doubtful, since a continuous phase transition should be described by a unique transition
temperature valid for a range of magnetic fields. Notwithstanding these doubts, the analysis
of modified Arrott plots indicates critical exponents β ∼ 0.3, γ ∼ 1.0 and Curie temperatures
TC ∼ 270 K (intermediate fields) and TC ∼ 278 K (high fields). The analysis, however, is not
consistent, since the critical exponents obtained from the temperature dependence of MS and
χ are lower than the exponents used in the equation of state (13) even after some iterations.
The data presented here do not support the scenario suggested by Xue et al [31] wherein the
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critical regime in La0.7Pb0.3MnO3 is dominated by mean-field fluctuations at low fields <1 T
and by the Heisenberg model at large fields >1 T.

The observation that the order of the phase transition changes on decrease of TC in the
manganites is consistent with numerous reports of percolative phase transitions in low-TC

manganite phases [5,7,32,33]. On theoretical grounds it is expected that manganites showing
phase separation have first-order transitions that might be driven towards second order by
crystallographic disorder [9]. In order to investigate this mechanism in the case of the LCMO
film, the resistivity transition is analysed within a model of percolative transport between a
semiconducting and a metallic phase. The analysis of the magnetization data indicated γ ∼ 1
and—in view of the mean-field behaviour of the manganite compounds with higher Curie
temperature—it is reasonable to assume a mean-field model for LCMO. Thus η = 0 and the
correlation length diverges with an exponent ν = 1/2. Percolation theory is formulated in
terms of the concentration p of the metallic phase which is a function of temperature. In the
critical regime, the behaviour of the system is determined by the correlation length. Since
there is overwhelming evidence that the transport and magnetic behaviour of the manganites
are intimately linked, the magnetic correlation length and the percolation correlation length
have to be equal:

ξ = ξ0|1 − T/TC |−ν = ξp0|1 − p/pc|−νp = ξp. (28)

This equation determines a unique relation between concentration p and temperature.
In order to compare percolation theory and experimental data, the temperature dependence

of the resistivity in the metallic and semiconducting phases has to be determined. This is
performed outside the transition regime. In the ferromagnetic phase the resistivity is due to
scattering by static disorder and first- and second-order magnon processes with [34]

ρm = ρ0 + ρ2T
2 + ρ4.5T

4.5. (29)

In the semiconducting phase, charge transport occurs by hopping of small polarons [10]; thus

ρs = AT exp[U/kBT ]. (30)

Fitting of equations (29), (30) to the data yields the parameters ρ0 = 0.099 m1 cm,
ρ2 = 6.9 × 10−6 m1 cm K−2 and ρ4.5 = 6.7 × 10−12 m1 cm K−4.5 in the ferromagnetic
regime as well as A = 1.4×10−3 m1 cm K−1 and U = 65 meV in the semiconducting phase.
These asymptotic forms for the resistivity are shown in figure 7.

The resistivity in the transition regime was calculated within the effective-medium
approximation, equation (26), using equations (28)–(30) as input. Since the films are rather
thick, three-dimensional percolation is assumed. The critical temperature was determined
from the inflection point of the magnetization to be TC = 271 K. With only one free
parameter—ξ0/ξp0 = 0.8—a convincing fit to the data could be obtained. The ratio of the
critical amplitudes ξ0 and ξp0 is close to unity as expected. Note that the calculated curve
reproduces the steep slope just at the metal–semiconductor transition quite well. This is due
to the strong temperature dependence of the metallic fraction p near the percolation threshold,
|p−pc| ∝ |T −TC |ν/νp with ν/νp = 0.57 for a three-dimensional system showing mean-field
behaviour. The resistivity calculated within the percolation model yielded a fit to the data
for the LBMO film that was much worse than that for LCMO. This is consistent with the
finding that the metal–semiconductor transition in LBMO is not of the percolation type, but is
a homogeneous spin-polaron transition.

5. Discussion and conclusions

In this work the critical regime for various manganite films was investigated by the analysis
of magnetization isotherms in the critical regime as well as the zero-field resistivity. It was
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Figure 7. The zero-field resistivity of the LCMO film as a function of temperature. The dotted
lines indicate the asymptotic forms of the resistivity in the metallic and semiconducting regimes.
The solid line was calculated on the assumption of a percolation transition and using the effective-
medium approximation.

found that films with composition La0.7Ba0.3MnO3, La0.7Sr0.3MnO3 and (LaMn)1−δO3 do
show a second-order phase transition, whereas La0.7Ca0.3MnO3 does not show a continuous
transition. This finding is especially important for the theoretical description of the manganites,
since it shows that despite all the similarities there might be different mechanisms underlying
CMR depending on the exact composition of the material. The results of this work and the
studies [5–7] show that the Curie temperature might be an indicator that can be used to classify
the nature of the transition. Roughly speaking, manganite samples with Curie temperatures
below ∼280 K do not show continuous phase transitions, whereas samples with higher Curie
temperature clearly exhibit second-order phase transitions. Since phase separation was found
in low-TC samples, it is tempting to conclude that the ground state is inhomogeneous for these
samples, whereas samples with high Curie temperature are homogeneous with the possible
formation of spin polarons consisting of 2–3 Mn ions.

In the case of La0.7Ba0.3MnO3, La0.7Sr0.3MnO3 and (LaMn)1−δO3 the critical exponents
found in this work are consistent with mean-field theory. This is in contrast with the findings
of a recent investigation of the double-exchange mechanism using Monte Carlo simulations,
which indicates critical exponents consistent with the Heisenberg model [11]. It was shown
by Fisher et al [25] that the critical exponents approach the values of the Heisenberg model
if the exchange interaction is decaying as J (r) ∼ r−d−v with 2v > d , whereas mean-field
values are found for 2v < d. Since the double-exchange mechanism is supposed to be of
short range, critical behaviour consistent with the Heisenberg model might be expected. The
reduced critical amplitudes indicate spin-polaron formation with a cluster size of about 2–3
Mn ions. This is consistent with calculations of the binding energy of Mn clusters performed
by Gehring and Coombes [35]. These authors found that a Mn-ion triple containing one hole,
i.e. a Mn3+–Mn4+–Mn3+ cluster, has a significant binding energy of about half the binding
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energy of the bulk. These large spin moments enhance the dipole–dipole interaction; in the
case of the Heisenberg model, however, corrections to the critical exponents due to the dipole–
dipole interaction are rather small [36] and do not explain the observed mean-field values. The
situation is different for the Ising model. In this case the critical dimensionality becomes d = 3,
if dipole–dipole interactions are present; accordingly the correlation length and susceptibility
diverge with mean-field exponents and logarithmic corrections, ξ ∝ |ε|−1/2| ln(|ε|)|1/6 and
χ ∝ |ε|−1 for |ε| < G1/φ [37]. G = µ0[(gµB)

2S(S + 1)]/JS(S + 1)a3 measures the relative
strength of the dipole–dipole and exchange interactions; the crossover exponent is given by
φ � 7/6. With S = 11/2, JS(S +1) = kBTC/2, TC ∼ 300 K and a lattice constant a = 3.8 Å,
one obtains |ε| < 0.19 which is obeyed in the experiments performed here. This discussion
shows that the critical behaviour of manganite films is consistent with mean-field theory as
well as with the Ising model including dipole–dipole interactions. It might be possible that the
tetragonal distortion of the films leads to a change from Heisenberg to Ising behaviour.

Critical exponents and Curie temperatures determined for various manganite systems are
listed in table 6. These values scatter in the ranges β ∼ 0.3–0.5 and γ ∼ 1.0–1.3. Schwartz
et al [40] already criticized some of the values determined by means of µSR and neutron
scattering, since the temperature range used for fitting was very wide with the analysis being
performed in a relative temperature interval +T/T < 0.3. The critical analysis reported
here was performed in a temperature range 0.001 < T < 0.05 and is expected to be more
reliable. Furthermore, the microwave, µSR and neutron scattering techniques enable only
the determination of the saturation magnetization; using bulk magnetization measurements,
some cross-checks can be performed that yield more reliable data. For example, it is perfectly

Table 6. Critical exponents for manganite films as determined by various methods. M(H) indicates
bulk magnetization measurements, FMR denotes ferromagnetic resonance, FMAR ferromagnetic
antiresonance, n-scattering stands for neutron scattering and µSR denotes µ+ spin resonance.

Compound Method TC (K) β γ Reference

La0.8Sr0.2MnO3 M(H) 315.7 0.50 ± 0.02 1.08 ± 0.03 [38]
La0.7Sr0.3MnO3 M(H) 354.0 0.37 ± 0.04 1.22 ± 0.03 [39]

La0.67(BaxCa1−x)0.33MnO3 M(H) [29]
x = 0.25 276.7 0.36 1.12
x = 0.5 306.1 0.40 1.11
x = 1.0 338.1 0.46 1.29

La0.7Pb0.3MnO3 M(H) [31]
µ0H > 1 T 334.4 0.33 ± 0.01 1.27 ± 0.02
µ0H < 1 T 336.5 0.50 ± 0.02 1.0 ± 0.1

La0.7Sr0.3MnO3 M(H) 360.6 0.45 ± 0.02 1.08 ± 0.04 This work
La0.7Ba0.3MnO3 M(H) 311.2 0.54 ± 0.02 1.04 ± 0.04 This work
(LaMn)1−δO3 M(H) 288.3 0.50 ± 0.01 1.04 ± 0.04 This work
La0.7Ca0.3MnO3 M(H) ∼ 271 — — This work

La0.8Sr0.2MnO3 FMAR 305.5 0.45 ± 0.05 — [40]
La0.7Sr0.3MnO3 FMAR 361 0.45 ± 0.05 — [41]
La0.8Sr0.2MnO3 M(H), FMR, FMAR 304 0.34 ± 0.05 — [42]

La0.7Sr0.3MnO3 n-scattering 378.1 0.295 ± 0.002 — [43]
La0.8Sr0.2MnO3 n-scattering 305.1 0.29 ± 0.01 — [44]
La0.7Sr0.3MnO3 n-scattering 350.8 0.30 ± 0.02 — [44]

La0.67Ca0.33MnO3 µSR 274.3 0.345 ± 0.015 — [45]
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possible to determine the saturation magnetization of the LCMO film studied in this work using
a modified Arrott plot; however, fitting of MS(T ) yields values for β that are inconsistent
with the values used in the equation of state (13) and for extrapolation, thus indicating the
breakdown of scaling. The direct measurement of the correlation length in a La0.75Sr0.25MnO3

single crystal by means of small-angle neutron scattering yielded a critical exponent ν = 0.4
rather close to the mean-field value [46]. One possibility for explaining the scatter in the
critical exponents might be a dependence of spin-polaron formation on the microstructure
with a resulting sample dependence of the critical exponents.

The resistivity of the LCMO film was analysed within a percolation model. Although
this is not the first analysis of this kind—see [47–49]—here the exact scaling behaviour of the
percolation transition was taken into account with only one free parameter, whereas previous
studies determined the temperature-dependent metallic fraction p phenomenologically with a
large set of fitting parameters. The fit of the percolation model used here to the data is quite
satisfactory and shows that a description of this low-TC manganite sample in terms of the
percolation of phase-separated clusters is reasonable. Further studies are clearly necessary in
order to understand the influence of an applied magnetic field on the transition.

Acknowledgments

The manganite films were fabricated at the University of Sheffield; that part of the work was
supported by the European Union TMR ‘OXSEN’ network. I thank Professor G Gehring,
University of Sheffield, for a critical reading of the manuscript. The work in Leipzig was
supported by the Deutsche Forschungsgemeinschaft under DFG IK 24/B1-1 (project H).

References

[1] Coey J M D, Viret M and von Molnár S 1999 Adv. Phys. 48 167
[2] Zener C 1951 Phys. Rev. 82 403
[3] Millis A J, Shraiman B I and Mueller R 1996 Phys. Rev. Lett. 77 175
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